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PREFACE

An experiment was conducted in which subjects had to land a simulated F-16
aircraft using a CAVE (Cave Automatic Virtual Environment) facility, a three
dimensional virtual environment room consisting of multiple mirrors, 3-D video-

projected displays in a highly stressful environment. This performance study was

- accomplished when the six subjects had a haptic stick (force reflecting joystick) condition

being either on or off. The tracking mission studied herein also had the constraint that
the participants were required to land the aircraft in only one attempt. During the data
collection, the visual scene was partially obscured by clouds in the early part of the
nﬁssioq, thus reducing the available visual field. Hence, it was hypothe}sized tﬁat the
subjects may benefit more from sensory information Iprovided by the‘haptic
manipulandum when the visual field was reduced. The main results of this study
indicate that performance can be enhanced in the CAVE by the haptic condition. One
negative aspect of this study was that the CAVE scenario was found to be so extremely
compelling that in two situations subjects could not complete the experiment due to
simulator-induced sickness instigated by their exposure to the highly immersive visual

field which became quite overwhelming.
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INTRODUCTION

Synthetic environments providé a valuable forum to immerse the user into a
virtual reality computer application to such a degree as to offer perceptual power, which
may compensate for the fact that an operator has to perform a task at a remote location.

" Traditional user interfaces are two-dimensional and some loss of immersive fidelity may
arise due to distractions and other confounding variables that compete for sensory
modality attention. A CAVE, however, is an interactive, real time, three-dimensional
visual/audio/haptic environment, which extrapolates and expands the immersive
properties of such synthetic environments to a novel degree. With the appropriate high-
resolution visual display, auditory, and haptic rendering, the goal is to provide to the user
a higher sense of presence about a remote environment. A subject immersed in the
virtual world of a CAVE can be overwhelmed by its commanding size and its 3-D
rendered visual scene which utilizes stereoscopic surrounding view (with perspective
correction) working with other senses, in harmony, to emulate a synthetic world from the
standpoint of the virtual visitor’s eyes, ears, and hands. To resolve and create the
compelling 3-D view, the subject wears stereoscopic glasses'to turn the projections

(overlap of two images) into hologram-like images.

Literature Review

Over thirty-five years ago the concept of an Ultimate Display was discussed
(Sutherland, 1965) in which each of the senses would be stimulated in order to provide a
complete immersion of the operator into a virtual world. Some synthetic environments of

this type, however, may not be practical unless they impart some benefit to performance




for specific tasks. The development of a CAVE is a generalization of traditional
two-dimensional display systems and can be attributed to the early work at the University
of Illinois at Chicago (Cruz-Neira et al., 1992, 1993). The first systems consisted of four,
Jarge rear-projection displays to form walls on a 10-foot cube. A front and two sidewall
projections are rendered with a floor projection realized by a ceiling system (Figures 1-2).
" All views are reflected off single surface, silvered, mirrors excited by a rear projector. It
is necessary to provide 3-D visual images and appropriate depth perception. These views
are constructed by the overlap of two images and then resolved to the observer via a
stereoscopic display and the use of lightweight 3-D LCD shutter glasses (cf. Figures 3a-
b). It is also necessary to provide the proper perspective realization for distance
correction and to maintain a location and orientation vector of the forehead of the user.
An alternative means of providing improved immersion over 2-Dimensional
presentations includes studies in head mounted displays (HMD), which has been a useful
means for enhancing fidelity (Durlach and Mavor, 1995). In these systems, the left- and |
right-eye images are generated on separate displays and directly placed in front of the
eyes, or somehow fed through optics to appear in froﬁt of the eyes (Figure 4). Some of
the difficultjes with HMDs, however, include having to deal with the latency of both the
image updating and monitoring of head position. Such a system also produces strain on
the neck muscles with continued operation. The CAVE overcomes these two drawbacks
to the HMD (i.e. latency and fatigue) at the expense of physical space and portability.
The main attribute of the CAVE, over traditional interactive synthetic environments, is
that it provides even greater immersion properties. Improving presence (defined as a

strong impression or feeling that you are at the remote environment) can be achieved via
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Figure 4. Stereoscopic Viewing to Produce 3-D Image to Subject

gleaning information from alternative sensory modalities. Part of the definition of virtual
reality has as its goal the creation of a believable representation of some actual
phenomenon. Presently, CAVE facilities exist at a number of research organizations and
universities performing exploratory investigations. Some of the studies include the
designing of the interiors for automobiles, inspection of dangerous areas such as inside
boilers, for studying molecular docking (i.e. finding how molecules bind together), for
educational purposes, and also for certain psychological studies (e.g. mitigation of

phobias, etc.).



Pertinent Related Research for the Performance Task

A major cause of aircraft accidents can be attributed to tight landing conditions
and turbulence manifested by wind shear, wind burst, or other difficult environmental
conditions (Phillips, 1995 a, b, and Mecham & Kong, 1995). Since an increasing number

of simulation systems being developed today may involve unmanned air vehicles (e.g.

aircraft flown at a remote location with no pilot onboard under control of an.operator in a

safe environment, (Cupp, 1998)), there necessitates the need to study how remote crew
stations may be enhanced to improve the performance of the operator in certain
undertakings as well as increasing the operator’s presence about the external environment
at a significant distance from the mission. Studies involving haptic (including force
reflecting joystick interfaces) devices have shown that motor learning can be expedited
via kinematic feedback (Schmidt and Young, 1991). Both performance and learning
show improvement depending on how subjects locate objects in 'a spatial sense, (Delmez-
De Jager & Schepens, 1995 and Bryant & Lanca, 1995). The response strategies elicited
by operators are known to be predicated on sensory-sets or motor-sets, (DeFranceso &
DeSario, 1995).

A prior study of investigating traéking performance with aircraft during difficult
landing conditions (Repperger, et al., 1997) demonstrated that by adding certain force
characteristics to a joystick, several performance measures were significantly improved
when the force condition was active. Such a study was previously conducted in a CAVE-
like simulator termed the FITE, which was a precursor to the synthetic environment
discussed here. Subjective comments by the pilots in the prior 1997 study indicated that

they would tend to “feel the direction of the runway” (via the haptic interface) when




limited visual conditions were available. Thus the level of situational awareness or

presence was improved via the haptic interface concerning the remote-tracking scenario,
when visual conditions were less than ideal. Haptic interfaces are well known to impfove
tracking performance when a subject has reduced neuromotor capabilities (Repperger, et

al., 1995a,b).

Objectives

The intention of this study was to investigate if similar performance improvements,
which occurred in a less compelling virtual environment (Repperger, et al. 1997), may
also appear in this new synthetic CAVE surroundings where the degree of immersion is
even more pronounced. To summarize the results from the 1997 study, it was shown that
the benefits derived using the haptic interface tended to ameliorate performance through
the mitigation of lateral landing error (reduced error in landing near a desired touch-down
point), producing less subjective workload, and lessening the amount of stick activity in
handling the aircraft. It was also noted that the haptic stick seemed to show its efficacy
best when the turbulence condition was active. The active, haptic, stick seemed to give
the operator a sense Qf presence about the orientation of the landing path. This study will
consider the influence on landing performance of an active haptic stick used in a CAVE

environment as stated by the following hypothesis.



Hypothesis

The null hypothesis we wish to reject is that the haptic stick provides no performance
advantage (using a variety of dependent measures) in such a difficult task environment.

Thus it is desired to reject:

-Ho: Haptic sticks do not influence landing performance in a CAVE environment.

METHODS

Subjects
A total of eight subjects participated in this experiment and data were obtained
from the six subjects who were able to complete all the experimental conditions
discussed herein. A subject panel from a local contractor for the Wright-Patterson Air
Force Base in Ohio, USA provided five of the participants. These édult people were
either housewives or students at a local university being employed part time. The
compensation for participation in this experiment was about $6 dollars (US) an hour for

their participation. The sixth subject was a US Air Force civil servant.

Apparatus - The CAVE Facility
The CAVE (CAVE Automatic Virtual Environment) is a multi-pérson 10 foot
room-sized, high-resolution 3D video and audio environrnent, which can be used to
provide compelling, immersive virtual environment experiences (Figure 1). This unique
facility is the property of Wright State University (Department of Psychology) but is

located at Wright Patterson Air Force Base in Dayton, Ohio, USA. In addition to the




scope of the academic investigations, the US Air Force also has the opportunity of

performing specific experiments related to military applications. Some of the attributes of

the CAVE facility include:

(1) The visual environment consists of up to 300° surround, plus floors (4 walls) for
projection of the landing task to the subjects. The walls are 10 x 10 x 10 foot screens
with three rear-projected walls and a top-projected screen for the floor (Pyramid
Video, Figures 2a—b)'. Imagery is created by an SGI (Silicon Graphics, Inc.) Onyx
computers with Infinite Reality graphics boards to generate similes that are projected
onto the walls and floor. The images are displayed by CRT projectors (M8500,
Electrohome). With the addition of the unique fourth wall, this system provides
complete immersion in the azimuth dimension (the only non-imaged area being
directly overhead) allowing the operator to monitor and interact with the environment
to the rear as well as to the sides and the front. To give the illusion of 3D, two
alternating images are displayed on each wall at a rate of 96 Hz (48 Hz refresh rate
per field, Figures 3a-b).

(2) Virtual spatial zed audio (provided to the subjects via earphones) is also available at
this facility but was not used in this investigation.

(3) Virtual or synthetic objects and real objects are integrated via careful monitoring of the

head position of the operator (using a magnetic tracking system employed to follow the

position and orientation of the user’s head and hand (six degree of freedom Flock of Birds,

Ascension Technology)). Stereo images are interpreted by use of LCD shutter glasses

(Crystal Eyes, Sterographics) that enable a different image to be displayed to each eye by

synchronizing the rate of alternating shutter openings to the screen update rates (Figure 4).

10




(4) The CAVE has a panoramic view that varies from 180° to 300° depending on the
distance of the viewer from the projector screens. One final attribute in this facility
includes the user’s finger-pinch gestures, which are sensed to provide a means to interact
with the virtual environment (PinchGloves, Fakespace, cf. Figure 3a, not used in this

investigation).

Experimental Procedures

The subjects trained by practicing an aircraft landing task (four sets of trials as in
Figure 5a) with full visual information (no wind turbulence) until 50% or more successes
(good landings) were achieved. A data day’s run consisted of 24 practice trials (Figure
5a), which were then followed by 24 trials for data collection with the cloud cover
condition (Figure 5b). A subject was rerun until he/she had achieved at least 50%
success for landings starting in the c101_1d cover. The Task Position levels (P =1,2, and 3)

in Figures 5a-b refer to the initial position of the F-16 and will be described in the sequel.

The Performance Task

The duration of the performance task was fixed to not exceed 120 seconds in length
with the objective of landing an F-16 aircraft successfully on a runway. The subject had

but one opportunity to perform this task at an optimum landing point designated on the

11
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runway (Figures 6,7). There were three levels of initial position based on the original
startivng point being aligned with the runway or displaced near or far from the center, to
the right or left. Obstacles were located to the right and left of the landing path, as
indicated. Sometimes the subjects landed near or off the right runway but such a landing

was deemed successful if the weight on wheels at touchdown was considered safe. As

‘indicated in Figure 5b, in half the cases (during data collection), wind turbulence was

present. During the data collection, all trials started in the clouds in which the runway
could not be initially seen. Subjects were told that they must have the nose of the aircraft
pitched upward slightly at landing (3° to 5°). The weight on v&'/heels af touchdown must
be distributed oﬁ the two back wheels. If a crash occurred, the screen would immediately
indicate this event (or a successful landing) and display the negative downward velocity
at the touchdown with the forward speed. In Figure 7, the optimum touchdown point
would correspond to a zero longitudinal error (y=0), zero lateral error (x=0), and for the

elevation above the runway (z=6) feet due to the height of the landing gear.

Haptic and Thrustmaster Sticks

A force-feedback manual control stick (IE-2000, Immersion Corporation) was
integrated into the system for manipulating objects and controlling the virtual
environment by the right hand of the subject (Figlire 3b). Figure 8 illustrates the force
reflection algorithm employed. Here the force reflected back on the operator was devised
to be a parabolic function of the heading error between the aircraft’s body axis and the

runway. Such a methodology was employed in the 1997 study (Repperger, et al., 1997)

13
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and had demonstrated efficacy in improving the presence of the operator on the final
orientation of the runway when the visual field was partially occluded.
A Thrustmaster joystick was utilized by the subjects with their left hand (Figure 3b)
to manipulate aircraft speed. This manipulandum operated as a displacement device with

small physical effort required to change its linear position.

Experimental Design

The experimental design was a two-variable, full factorial, and repeated measures.
This implies each subject was exposed to all treatment conditions (within subject design,
hence each subjects acts as his c;wn control). The first independent variable (two levels)
was the haptic stick being either “on” or “off” (“off” corresponds to a displacement stick
with no force reflected. The “on” condition for the haptic stick was described previously
and represents a haptic algorithm to provide force feedback to the operator, cf. Figure 8).
The second independent variable (two levels) was difficulty of the task, which for this
analysis consisted of low and high levels of initial position error of the aircraft in
relationship to the orientation of the runway. As discussed in the results section, the
initial position conditions P=1 and P=2 were combined into a low difficulty task. The
high difficulty task consisted of the conditions P=3 for the initial starting points (right or
left) of the aircraft. Another variable considefed during the data collection was a wind
turbulence factor being either high or low. For this task difficulty versus haptics study,
all data utilized both levels of the wind turbulence condition but with easy and hard initial
starting positions. A variety of dependent performance measures were considered. At

landing, the operator had to reach an optimum point “sweet spot” on the runway as

17




indicated by a green dome on the visual simulation. The root mean square error in the x
and y direction from the optimum landing point (denoted as xgms and yrms) was
calculated when the F-16 aircraft touched down. If these measures were too large, then
the landing was not éonsidered successful, since the aircraft was off the runway. Crashes

were recorded at landing if too much weight on wheels was determined based on the

“vertical descent velocity. A metric for calculating crashes was developed from known

flight test standards (e.g. an F-16 would be considered crashed if its horizontal velocity,
at landing, exceeded 9 ft/sec). Crashes could also occur if the aircraft was out of bounds
during touchdown or simply ran out of time and had not landed. A number of other
dependent landing performance measures were analyzed including the aircraft’s angular
rates at landing for both the pitch and roll axis of the aircraft as well as higher derivatives
of these position and orientation variables at touchdown.

For both training and data collection, two levels of task difficulty were selected
based on varying the initial point of starting the task (i.e. away from the cofrect alignment
of the runway) with the constraint of having a fixed amount of time to land the aircraft.
Figure Sa illustrates an experimental design scenario during the training phase. In Figure
5b, the data collection scenario is portrayed. The P =1, 2, or 3 initial starting points were
presented randomly to the right or left when the simulation was started. The amount of
initial lateral displacement error was either zero, +1000 feet, or +2000 feet. Preliminary
analysis had shown little difference in task difficulty as a consequence of being initially

either to the right or left of the runway for the same amount of displacement.

18




Training

Table I describes the chronological pattern of runs for a typical day’s run. Six
runs were conducted with the stick being either active (haptic feedback) or passive. The
next six runs reversed the condition of the stick. Typically subjects ran this pattern for
abouf fifty minutes and the initial positions were randomized. The next training day the
subject ran the initial haptic stick condition being reversed and they continued to practice
a pattern similar to Table I. -

A critical performance measure was the event of a crash at landing. A crash was
defined as having too much weight on wheels as the aircraft landed based on known
military standards. A crash would occur if any of the following events happened: (1) The
weight on wheels exceeded the maximum allowed, (2) If one back wheel (rather than
both back wheels) touched down and the weight on that side of the aircraft exceeded the
- safe amounts for landing, or (3) If the froﬁt wheels should touch down first (with
sufficient negative downward velocity/acceleration). Thus for a successful landing, the
pitch attitude (orientation) of the aircraft must be slightly nose up (i.e. pitch angle up
about 3°to 5°) at landing and not having an excessively large downward
velocity/acceleration of the aircraft before the actual touchdown.

If subjects were successful with the trainihg paradigm displayed in Table I, they
then moved on to the instrumented flying (i.e. flying in clouds) for data collection. Table
H illustrates a typical day’s run for data collection for the same haptic condition for 12
runs consisting of two replications of the three initial positions and two turbulence

conditions presented randomly. To reach this level of skill it typically took two
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additional weeks of practice. Data were not collected and subjects continued to practice
until at least 50% successful landings for the Table II trials were achieved.

In the data collection phase in Table II, the cloud condition was initially presented
and the subjects had to fly instruments until they broke out of the clouds (at 1.8 nautical
miles). After breaking out of the clouds, they had only one chancé to land (with about 36

"seconds remaining). When the haptic stick condition was active the subjects could “feel” the
direction bf the runway prior to breaking out of the clouds. If the haptic stick condition was
not active, the subjects had no clue as to the direction of the runway and could only sense the
lateral displacement error when they immediately broke out of the clouds with their vision.

They still had only 1.8 nautical miles to land the aircraft (in about 36 seconds).

Table I - Training Table - No Clouds - Full Visual Field (Pos.=Initial Position)

Haptic Pos. | Pos. | Pos. | Pos. | Pos. | Pos.
on/off
Hapticoff | P=3 [ P=2 | P=1 | P=3 | P=2 | P=1
Hapticon | P=1 | P=3 | P=2 | P=2 | P=3 | P=l
Hapticoff | P=2 | P=1 | P=2 | P=3 | P=1 | P=3
Hapticon | P=3 | P=2 | P=3 | P=1 P=1 =2

The initial positions P = 1, 2, 3 were presented randomly (with the assistance of a random
numbervgenerator) so that each subject did not have knowledge as to the initial position he
may have had in starting the task. In each set of six runs (same haptic stick condition, cf.
Figure 5a), three levels of initial positions occurred twice. The 12 runs during the data
collection phase were conducted with the alternative starting stick condition on successive

days. This procedure was instigated to mitigate any ordering or fatigue effects.
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Table II - A Possible set of Runs in The Clouds (Reduced Visibility) Conditions
(Initial Position: P=1, P=2, P=3, Turbulence = 1 or 0 (on or off))

Haptic P/T P/T P/T P/T P/T P/T
Stick
Haptic Off | P=1, P=2, P=3, P=2, P=1, P=3,
T=0 T=1 T=1 T=0 T=1 T=0
Haptic Off | P=2, P=3, P=1, P=1, P=3, P=2,
T=1 T=0 T=1 T=0 =0 T=1
Haptic On | P=3, P=1, P=2, P=2, P=1, P=3,
, T=0 T=1 T=0 T=0 T=1 T=1
Haptic On | P=3, P=2, P=1, P=3, P=2, P=1,
T=1 T=0 T=0 T=1 T=0 T=1

Some possible confounding effects may be due to varying reinforcement schedules and
inconsistent delivery of critical instructions for subjects that completed the landing tasks.
Both the reinforcement schedules and the rules of engagement had to be unswerving
across subjects to provide reproducibility. If a subject performed well, he/she was
complemented on his/her performance but not given additional instruction. If, however,
the subject continued to crash at landing, they were told to focus on the following key

points at touchdown to accomplish a successful landing:

Instruction Set Given to Subjects

(1) Both back wheels should touch first; hence the body axis of the aircraft should be
pitched up slightly. | |

(2) The air speed should be approximately 180 nautical miles per hour at the landing.

(3) A gradual angle of approach (small pitch changes) was generally correlated with a
successful landing, especially near the ground.

(4) The negative downward velocity should not be in excess of —5 feet/second at the

‘touchdown.
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(5) The roll angle of the aircraft should be near zero (no wing could touch th¢ ground).
(6) The speed of the aircraft (left hand control) was not a major factor in a successful
landing as long as it was kept near 180 nautical miles/hour.

If the subject still continued to cfash at landings, the above six rules were reinforced

and practiced until steady-state behavior occurred and the percent of successful landings

“increased.

Subjective Assessments

At the conclusion of a CAVE run, it was of interest to see if subjects were
possibly influenced, in a simulator-sickness sense, by their exposure to this highly
immersive visual field rendering. An exit questionnaire was given to the subjects and it

is reproduced in Appendix A of this report. Two subjects (out of the €ight that started),

could not finish the experiment due to simulator-sickness effects.

Data Analysis

At the landing of the F-16 aircraft, which had to be accomplished in one attempt,
the data recorded included the key experimental variable conditions (haptic condition on
or off, the initial position level, and the turbulence on or off) as well as the important
dependent méasures: X, Y, and Z landing error with respect to the optimum point, the
velocity and acceleration of these variables, the typical aircraft orientation variables (roll,
pitch, and yaw), their respective velocities and accelerations, the altitude, positioﬁ,
velocity and acceleration at touchdown and whether a crash occurred. The criteria for a

crash would be that a sufficiently high weight of wheels was recorded at touchdown, the
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aircraft could be out of bounds, or had an untoward attitude variable recorded at the

instant of contact with the ground. The data were analyzed in SYSTAT® 8.0.

RESULTS

The risk level that we incorrectly reject the null hypothesis (when Ho is true)

“was selected as o = .05. This gives a 95% confidence in our decision process. Since this

was a within-subjects design, blocking across subjects normally occurred whicﬁ reduced
this source of variation (within a block, however, all other experimental conditions were
randomized). We look at the main effects and study their respective interactions.

Six different performance measures are reported here (cf. Figure 7). Since an
optimum landing point was displayed, and the actual touchdown point was recorded, this
gave rise to the following error variables at touchdown: (1) lateral landing error (X from
the optimum point), (2) longitudinal landing error (Y from the optimum point), (3) crash
or no crash condition, (4) aircraft Roll error (0° is ideal), (5) pitch erl;or (excessive
deviations from the ideal 3° to 5° suggested), and (6) vertical downward
velocity/acceleration if this magnitude digressed significantly from the recommended -5
feet/sec velocity at touchdown (-9 ft/sec would constitute a crash).

For all the analyses, the difficulty of the task was first dichomidized into two
groups. The less difficult task occurred with the initial position at 0° or at a position
displaced + 1000 feet from center. The high level of difficulty considered the + 2000 feet
initial displacement. T-tests were then conducted on the landing variables across both
levels of task difficulty with significant differences appearing. Thus the two levels of

difficulty were accepted as viable independent variables to perform subsequent analysis.
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The first (more general) ANOVA then considered haptics versus task difficulty for the

dependent measures consisting of some key landing variables. Table Il illustrates

significant effects for the normalized dependent measures: crashes Xrms, Yrwms, and

Zyelocity at the touchdown from this ANOVA. In Table III, the p value and F value are

given for the dependent performance measure of interest. The mean values of the

“variables depicted in Table III are displayed in Figure 9.

Table ITI - ANOVA Results for Various CAVE-Haptic Tasks (p levels)
(* indicates significant at the o =.05 accepted level of risk — Type I error)

Treatment Crashes X —-RMS Y - RMS Z- Velocity
Condition (percent) At landing At landing (RMS Value)
Difficulty p=0.230 p <.001* p = 0.006* p=0.289

F =1.603 F= 62.536 F =10.077 F=1231
Haptics p = 0.009* p =0.003* p=0.070 p=0.074

F =9.552 F =12.949 F=3.793 F=3.834
Difficulty * p=0.788 p=0.10 p=0.235 p=0.445
Haptics F=.075 F=0.880 F=1.533 F=0.623
(Interaction)

To explain the normalization, the percent crashes were determined as a ratio

involving the crashes with each block (c-f. Table II). The X-RMS values were normalized
to one runwéy width (46 feet). The Y-RMS values were divided by 150 and expressed in
feet. The Z values were divided by 9 (negative descent velocity more negative than -9
ft/sec would indicate a crash). Figure 9 illustrates the means of these normalized variables
for the corresponding data displayed in Table III. Since both haptics and task difficulty
showed main effects but their interactions were not significant (p>.05), further analysis of

the constituent dependent variables was then conducted. Using a subset of the data from
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Table II1, a second analysis was accomplished in which it was desired to look within the

difficulty and turbulence conditions using some of the above dependent variables including
the rotational variables R (roll axis) as well as the vertical descent variable Z (which was
related to the occurrence of a crash). Again, a different subset of the data from Table III
was then applied in a third analysis in which it was desired to look within the haptics and
“turbulence conditions using some of the above dependent variables as well as the rotational
variables R (roll axis) including the vertical descent variable Z (which was related to the

occurrence of a crash).

Normalized Percent

S2

S1=Haptics On,
S2=Haptics Off

percent

X-RMS
(1 unftrii%%;) (1 unit = 46 feet) Y-RMS

(1 unit=150 feet) Z-velocity
(1 unit = 9 ft/sec.)

Dependent Performance Measures

Figure 9. Normalized F-16 Landing Performance Variables
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Table IV — ANOVA Results for Various CAVE-Haptic Tasks (p levels)
(* indicates significant at the o =.05 accepted level of risk — Type I error)

Treatment X-RMS Y- RMS [R-velocity|| |R-acceleration|
Condition At Landing At landing At landing At landing
Difficulty p<0.01% p=.014%* p=0.734 p =0.969

F =57.099 F = 8.368 F=0.121 F=0.002
Turbulence p<0.01*% P<0.01* p=0.012% p=0.016*

F=163.34 F =32.665 F=_8.737 F=70911
Difficulty * p =0.198 p=0.779 p=0.991 p=0.578
Turbulence F=1.861 F=0.083 F=0.001 F= 0326
(Interaction)

Table V- ANOVA Results for Various CAVE-Haptic Tasks (p levels)

(* indicates significant at the o =.05 accepted level of risk — Type I error)

Treatment Percent Crashes | X— RMS Y- RMS [R-velocityl|
Condition At Landing At landing At landing At landing
Haptics p=0.078 p =.009* p=0.076 p=0.196

F=3.721 F=9.848 F=3.763 F=1.872
Turbulence p=0.168 p<.01* p <.01* p =0.007

F=2.158 F=162.899 F=37.977 F =10.302
Haptics * p =0.601 p=0.782 p=0.430 p=0.450
Turbulence F=0.288 F=0.80 F =0.666 F=.611
(Interaction)
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DISCUSSION

Effects of Haptics versus Difficulty

From Table III, a number of effects.can be gleaned from the data:

The percent of crashes was significantly reduced by the haptics condition being on. To
. view the results of Table III more clearly, Figure 9 illustrates these key variables with the

normalized means of the percent crashes, Xrms, Yrms and Zyeiocity displayed. From both
Table III and Figure 9, it is obvious that the haptics condition being on significantly
reduced the percent of crashes(about 17 percent) when averaged across all other
conditions. The Xgms variable was related to performance at landing and both task
difficulty and haptics had the proper influence; e.g. greater task difficul‘ty produced
higher Xgwms at landing. The haptics condition being on reduced the Xrms condition since
this error vector and the haptic force reflection algorithm both occurred in the lateral
direction. For the Yrms condition, the haptics condition active did not have a significant
reduction. This may be expected since the haptic’s effect .is orthogonal to the Y direction.
For the Zyeiocity variable, the haptics condition being on did not have a significant effect
and difficulty seemed to have a lesser influence. The interaction terms (bottom row of
Table III) seem well behaved, except, possibly, for the variable X-RMS. This variable
was close to having an interaction (p=.072) since both the difficulty measure and haptics
occurred in the lateral direction.

Since the main effects are shown in Table III, subsets of these data will now consider

specific tests to examine other possible relatioﬁships in the data.
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Effects of Difficulty versus Turbulence

With reference to Table IV, if the turbulence condition was high, both XRMS and
YRMS were affected (when averaged over all difficulty conditions). Also both [R-
velocity| and |R-acceleration| were higher if the turbulence was high. This seems
' plausible with an increased turbulence factor, the orientation variable R (R=roll of an
aircraft) should be affected. The interactive terms (bottom row of Table IV) showed no

major effects since difficulty and turbulence were orthogonal variables that were

independent of each other.

Effects of Haptics versus Turbulence
With reference to Table V, when looking within the turbulence data, the percent
crashes were not affected (when averaged over difficulty). The variable X-RMS,
however, was influenced by both haptics being on and turbulence high. The Y-RMS
variable was less affected by the haptics variable but more so by turbulence. The haptic
condition worked in a direction that was orthogonal to the Y error. The |[R-velocity| term

was affected by turbulence only. This is consistent with Table IV.
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CONCLUSIONS

From a performance perspective, certain key landing variables were significantly
,inﬂ.uenced by the “on” condition of the haptic stick, which was generally in a direction to
reduce the lateral touchdown landing error from the optimum point. This worked best and
-consistently in the same direction that the haptic force was applied (X direction).

A recommendation for future studies would be to activate the haptic stick in both the
lateral and longitudinal axis. Also by varying the degree of visual immersion as an
independent variable of interest, the benefits provided by the visual field wbuld be better

understood in relationship to the haptic manipulandum.

Acknowledgements

The CAVE facilities and computer support for simulation were graciously supplied by
Dr. R. H. Gilkey from the Department of Psychology, Wright State University. The data
analysis performed was supported, in part, by the AFOSR New World Vista Program,
LRIR: 97ALO07N11(NWYV). The computer simulation support was provided by R.
Green. A training paradigm and rule base was developed by T. LaFleur, Ph. D., which

significantly helped instruct novice subjects to perform successful landings.

29




REFERENCES

Bryant, D. J. & Lanca, M. Spatial concepts and perception of physical and diagrammed
scenes. Perceptual and Motor Skills, 1995, 81, 531-546.

Cruz-Neira, C., Sandin, D. J., & Defanti, T. A., Surround-screen projection-based virtual
reality: the design and implementation of the CAVE, Computer Graphics:
Proceedings of SIGGRAPG 93, August 1993, 135-142.

Cruz-Neira, C., Sandin, D. J., Defanti, T. A., Kenyon, R. V., & Hart, J. C., The CAVE:
audio visual experience automatic virtual environment, Communications of the

ACM, 1992, 35 (6), 65-72.

Cupp, C. M., Unmanned Aerial Vehicles, The DTIC Review, The Defense Technical
Information Center, Vol. 4, No. 2, 1998.

DeFrancesco, C. & DeSario, L. F., Observation of response strategies in cycling time
trials. Perceptual and Motor Skills, 1995, 81, 171-188.

Delmez-De Jager, D. & Schepens, N. Observation of response strategies in cycling time
trials, Perceptual and Motor Skills, 1995, 81, 171-188.

Durlach, N. I. & Mavor, A. S. (Eds.), Virtual reality — scientific and technological
challenges, Washington DC: National Research Council, National Academy Press,

1995

Mecham, M & Kong, H., Wind shear blamed in Apstar-2 loss. Aviation Week and Space
Technology, 1995, 143(13), 38-39.

Phillips, E. H., FAA offers proactive safety concept. Aviation Week and Space
Technology, 1995a, 143(18), 42.

Phillips, E. H., Vortex tests may yield clues to US AIR crash. Aviation Week and Space
Technology, 1995b. 143(14), 33.

Repperger, D. W., Phillips, C. A., & Chelette, T. L. Performance study involving a
force-reflecting joystick for spastic individuals performing two types of tracking
tasks. Perceptual and Motor Skills, 1995a, 81, 561-562.

Repperger, D. W., Haas, M. W., Brickman, B. J., Hettinger, L. J., & Roe, M.'M, Design

of a haptic stick interface as a pilot’s assistant in a high turbulence task environment.
Perceptual and Motor Skills, 1997, 85, 1139-1154.

30




Repperger, D. W, Phillips, C. A., & Chelette, T. L., A study on spatially induced ‘virtual
force’ with an information theoretic investigation of human performance. IEEE
Transactions on Systems, Man, and Cybernetics, 1995b, 25, 1392-1404.

Schmidt, R. A. & Young, D. E. Methodology for motor learning: a paradigm for
kinematic feedback. Journal of Motor Behavior, 1991, 23, 13-24.

Sutherland, L. E., 1965, The Ultimate Display, Proceedings of the IFIP Congress, 1965,
2:506-508. ’

31




THIS PAGE INTENTIONALLY LEFT BLANK.

32



APPENDIX A — Subjective Assessment Questionnaire

CONSENT TO PARTICIPATE IN RESEARCH
VERITAS FACILITY
DEPARTMENT OF PSYCHOLOGY
WRIGHT STATE UNIVERSITY
DAYTON, OHIO 45435

The purpose of this research study is to obtain data on auditory, visual and/or haptic performance in virtual
environments. These data will be used to guide the design of virtual environment systems that will produce more
realistic experiences for users.

- During this study, I will sit quietly, while visual images and/or sounds, either stationary or moving, are presented. In
response to these stimuli, I will make verbal statements or make gestural motions with my hands. The experimental
session will take approximately hours. I understand that I will be compensated at a rate of. for my
participation.

In some of the experiments, 1 may be seated inside a virtual environment facility called “the CAVE” composed of four
10x10- foot display screens in the shape of a square room. In some experiments I may see only visual images (on the
large display screens and/or the floor , or computer monitors or both) without sound, I may hear sounds (either over
headphones or over loud speakers) or I may see images and hear sounds together. I may wear thin cloth gloves to
measure my hand gestures (e.g. pinching motions). I may wear liquid crystal (LCD) shutter glasses, like large
sunglasses to see 3D images, but can wear these shutter glasses over any eyeglasses or contact lenses I may normally
wear. The shutter glasses or headphones may have a commercial magnetic tracking sensor attached to it that is used to
measure and record the position of my head. The cloth gloves may have the same type of sensors attached to measure
and record the positions of my hands. In some experiments I will use a hand controller or joystick to interact with and
control the motion or behavior of objects in the virtual environment.

I understand that any information about me obtained from this study will be kept strictly confidential and that I will not
be identified by name in any report or publication.

I realize that I may experience symptoms like motion sickness, similar to what I might experience riding in a car or
after a carnival ride. If I experience symptoms, I should immediately inform the experimenter through the intercom. In
addition, I will be tested for motion sickness symptoms before and after the experiment. Iunderstand that if the
symptoms have not gone away after 1 hour, I will be advised not to drive a car for 24 hours and a ride will be provided.
The sounds I hear would never be harmful or uncomfortably loud. If the sounds are uncomfortable, I should
immediately remove the headphones and notify the experimenter through the intercom. If viewing the images causes
any eye strain, [ should immediately notify the experimenter through the intercom.

I realize that participation in this research is completely voluntary. I understand that I am free to refuse to participate in
this study or to withdraw at any time. There is no penalty of any kind for either non-participation or withdrawal.

A summary of the results of the experiment may be requested by contacting the researchers listed below. The results of
this study will be available on approximately.

If I have concerns or questions about the research I understand I can contact the Principal Investigator, Robert H.
Gilkey at 775-337 John Flach, Co-Investigator 775-2574 or through the Wright State University, Department of
Psychology (775-2391).

My signature below indicates that I consent to participate in this research investigation.

Date

Name (Please Print Neatly)
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